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Abstract

Although the stream of information we encounter is continuous, our experiences tend to be

discretized into meaningful clusters, altering how we represent our past. Event segmentation

theory proposes that clustering ongoing experience in this way is adaptive in that it promotes

efficient online processing as well as later reconstruction of relevant information. A growing lit-

erature supports this theory by demonstrating its important behavioral consequences. Yet the

exact mechanisms of segmentation remain elusive. Here, we provide a brief overview of how

event segmentation influences ongoing processing, subsequent memory retrieval, and decision

making as well as some proposed underlying mechanisms. We then explore how beliefs, or

inferences, about what generates our experience may be the foundation of event cognition. In

this inference-based framework, experiences are grouped together according to what is inferred

to have generated them. Segmentation then occurs when the inference changes, creating an

event boundary. This offers an alternative to dominant theories of event segmentation, allowing

boundaries to occur independent of perceptual change and even when transitions are pre-

dictable. We describe how this framework can reconcile seemingly contradictory empirical find-

ings (e.g., memory can be biased toward both extreme episodes and the average of episodes).

Finally, we discuss open questions regarding how time is incorporated into the inference

process.
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1. Introduction

Humans have a natural tendency to segment the continuous stream of incoming informa-

tion we experience into discrete events, broadly defined as units of activity with an identifi-

able beginning and end (Zacks, Speer, Swallow, Braver, & Reynolds, 2007). People can

detect the transitions between events, called event boundaries, while reading (Speer & Zacks,

2005) and watching films (Newtson, 1973), as well as during more naturalistic first-person

experiences (Magliano, Radvansky, Forsythe, & Copeland, 2014). Event segmentation may

occur spontaneously, as evidenced by longer processing times at boundaries in the absence

of a segmentation task (e.g., Hard, Recchia, & Tversky, 2011; Speer & Zacks, 2005). In addi-

tion, neuroimaging data have shown that the brain responds to boundaries during passive

viewing (Baldassano et al., 2017; Ben-Yakov & Henson, 2018; Speer, Zacks, & Reynolds,

2007; Zacks, Braver, et al., 2001), representing information within an event more similarly

than across events (Chen et al., 2017). Segmentation behavior tends to be consistent across

people both behaviorally (Jeunehomme & D’Argembeau, 2018; Newtson, 1973; Zacks,

Tversky, & Iyer, 2001) and neurally (Baldassano et al., 2017; Ben-Yakov & Henson, 2018;

Speer, Swallow, & Zacks, 2003), suggesting that event structure is construed in a systematic

way. Moreover, segmentation has been shown to have important behavioral consequences

such as enhancing memory for items encountered at boundaries (Heusser, Ezzyat, Shiff, &

Davachi, 2018; Swallow, Zacks, & Abrams, 2009) and warping time perception such that

intervals with boundaries are estimated as longer in memory (Ezzyat & Davachi, 2014; Losit-

sky et al., 2016). Boundaries may also provide an opportunity to consolidate information

from the previous event (Bilkey & Jensen, 2020). Here, we first review the behavioral effects

of event segmentation, then we review potential mechanisms of event segmentation, and

finally we explore the role of inference as a framework for event cognition.

2. Why do we segment events?

Segmenting experience into distinct events has been shown to have extensive psychological

consequences (see Table 1). In this section, we review three domains affected by event seg-

mentation: (a) in-the-moment processing of ongoing experiences, (b) memory organization of

past experiences, and (c) making decisions that best serve the current situation. The effects of

event segmentation observed in these domains demonstrate a benefit for adaptive behavior.

2.1. Facilitation of ongoing event processing

When encountering incoming information, event segmentation can facilitate processing

by increasing access to the event that is currently being experienced. One measure that
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has been used to assess facilitated processing is how long it takes to read narrative pas-

sages with and without event boundaries. Reading time increases have been observed in

studies that explicitly signal time shifts (e.g., “an hour/day later” vs. “a moment later,”

Table 1

Behavioral effects of event segmentation by boundary manipulations

Boundary

Manipulation Study Behavioral Effect(s)

Reading time
Narrative changes Zwaan, Magliano, and Graesser

(1995)

Temporal and causal change > no change

Zwaan, Radvansky, Hilliard, and

Curiel (1998)

More situational change > less

Rinck and Weber (2003) Temporal and protagonist change > no change

Zacks et al. (2009) More situational change > less

Radvansky and Copeland (2010) Temporal change > no change

McNerney, Goodwin, and

Radvansky (2011)

Causal and character change > no change > spatial

and temporal change

Pettijohn and Radvansky (2016) Unexpected change > expected or no change

Narrative time

changes

Zwaan (1996) Temporal change > no change

Speer and Zacks (2005) Temporal change > no change

Memory access
Narrative time

changes

Zwaan (1996) Within > across recognition (online and delayed)

Speer and Zacks (2005) Within > across recognition (online)

Ezzyat and Davachi (2011) Within > across cued recall

Activity change

(video)

Swallow et al. (2009) Within > across nonboundary recognition (online);

Across > within boundary recognition (online)

Swallow et al. (2011) Within > across nonboundary recognition (online);

Across > within boundary recognition (online)

Task and category

change

DuBrow and Davachi (2013) Within > across order memory and serial recall

DuBrow and Davachi (2014) Within > across order memory

DuBrow and Davachi (2016) Within > across serial recall

Virtual room

change

Horner et al. (2016) Within > across sequence recognition

Background color

change

Heusser et al. (2018) Within > across order memory

Turns in virtual

navigation

Brunec et al. (2020) Within > across order memory; Across > within

duration discrimination

Spontaneous clustering
Narrative changes Zwaan, Magliano, et al. (1995) Within > across verb clustering

Task change Polyn et al. (2009b) Within > across recall transitions

Background color

change

Heusser et al. (2018) Within > across recall transitions

Prediction
Narrative changes Zacks et al. (2009) Within > across perceived predictability

Pettijohn and Radvansky (2016) Within > across expectedness ratings

Activity change

(video)

Zacks et al. (2011) Within > across prediction accuracy
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Speer & Zacks, 2005; Zwaan, 1996; “the next morning,” Pettijohn & Radvansky, 2016)

as well as protagonist changes (Rinck & Weber, 2003). These results suggest that narra-

tive comprehension is facilitated within events versus across event boundaries, perhaps

because within-event content is predicted by learned event schemas that involve a

sequences of states (Franklin, Norman, Ranganath, Zacks, & Gershman, 2019; Radvansky

& Zacks, 2011) or situation models (Zwaan & Radvansky, 1998). Zacks, Speer, and Rey-

nolds (2009) explicitly probed event segmentation and predictability and found that narra-

tive passages rated low in predictability showed longer reading times and more identified

boundaries. Moreover, consistent with a role for predictability in mediating event segmen-

tation, Pettijohn and Radvansky (2016) showed that reading times do not slow down at

shifts when they are foreshadowed (i.e., predicted). These data suggest that predictable

content that belongs to the same event facilitates rapid comprehension.

Similar to the reading time data, when presented with still frames of action sequences,

people tend to dwell longer on transition frames, suggesting increased processing

demands at boundaries (Hard et al., 2011; reviewed in Baldwin & Kosie, 2020). Interest-

ingly, however, predictability generally enhances this dwell time effect. That is, the dwell

time difference between actions at boundaries and within-event actions increases as a

function of experience (Hard, Meyer, & Baldwin, 2019; Kosie & Baldwin, 2019). This

exaggeration may be driven both by reduced processing time within events as the pre-

dictability of actions increases, as well as by longer dwell times at boundaries as the

anticipation of change triggers viewers to gather more information (see Baldwin & Kosie,

2020, for an information optimization account of ongoing event processing).

When processing ongoing information, it may be helpful to have selective access to

currently relevant information. Event segmentation can help prioritize information rele-

vant to the currently active event, while making the information from previous events less

accessible. This has been demonstrated in paradigms that interleave narrative reading or

movie watching with recognition memory tests. When there is an event boundary

between the encoding of the probe and the recognition test, people recognize the probe

more slowly (Speer & Zacks, 2005; Zwaan, 1996) and less accurately (Speer & Zacks,

2005; Swallow et al., 2011). In a similar set of studies in which people experienced event

boundaries by walking through doorways, items learned in a previous room became less

accessible (Radvansky & Copeland, 2006; Radvansky, Krawietz, & Tamplin, 2011). This

suggests that when an event ends, the information that was learned within that event

drops out of active working memory because it is no longer relevant. Updating an active

event in working memory (i.e., event model) in this way is one of the principles of the

Event Horizon framework (Radvansky, 2012; Radvansky & Zacks, 2017) and has benefi-

cial effects for online processing (e.g., reduced reading time and increased working mem-

ory access) of incoming information within the same event. Dropping previous

information out of working memory may have the added benefit of preventing that irrele-

vant information from intruding on the current processing. This may also protect informa-

tion in the previous event from retroactive interference, increasing the accuracy of later

reconstruction (Gershman, Radulescu, Norman, & Niv, 2014).
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2.2. Memory organization

Segmenting events can also support the encoding and retrieval of episodic memories.

One line of evidence that event segmentation helps episodic memory is that, when items

belong to the same event, they show mutually facilitated recognition memory. For

instance, when people read multiple sentences, some of which share a location, they are

faster to recognize the sentences that share a common location compared to sentences that

do not (Radvansky & Zacks, 1991; Radvansky, Zwaan, Federico, & Franklin, 1998). This

benefit may be driven by recent activation of a sentence that could prime retrieval of

other episodes in the same event. One study that supports incidental retrieval of within-

event items used a subset of a previously studied group of words as a target for an unre-

lated memory task, and showed that a lure from the same group was more likely to be

falsely recognized than a lure from a different group (Hoskin, Bornstein, Norman, &

Cohen, 2018). While this demonstrates that it can come at a cost at times, having seg-

mented structure in memory can keep related information together, facilitating later retrie-

val.

Memory studies have also directly probed whether people are more likely to retrieve

items that belong to the same event together. Analogous to the suppression of previous

event information observed during ongoing processing, retrieving events from episodic

memory that have a boundary between them can be more challenging than retrieving

information from the same event. Zwaan (1996) used a cued recognition paradigm where

a sentence that was followed by a time shift signal phrase served as a cue to facilitate

recognition speed of the next target sentence. Event segmentation was manipulated by

shift magnitudes (“a day/hour/moment later”). Consistent with the prediction that event

segmentation enhances retrieval of items in the same event and diminishes retrieval of

items in a different event, people were slower to recognize the target sentence after a lar-

ger shift. Using a similar time shift signal (“an hour later” vs. “a moment later”), Ezzyat

and Davachi (2011) asked people to recall what came after a cued sentence. In the large

shift condition, recall performance was lower when a pre-shift sentence was used as a

cue as compared with when a post-shift sentence served as a cue. However, a difference

was not observed when the time shift was small. Complimenting the online predictability

effects discussed in the previous section, these results suggest a mechanism by which

retrieving an episode from long-term memory can cue the next episodes that occurred

within the same event, guiding predictions of what will happen next.

Relatedly, studies that probe the temporal order of items that either belong to the same

event or different events provide additional evidence for facilitated within-event retrieval.

In DuBrow and Davachi (2013, 2014), subjects judged the relative recency of two items

within or across boundaries that were created by switching stimulus categories and their

associated tasks (e.g., male/female judgment for the face category; bigger/smaller than

shoebox judgment for the object category). Recency judgments between two studied

items were less accurate when the intervening sequence contained boundaries. To exam-

ine whether this performance drop was due to retrieval failure for the intervening items,

recognition memory for those intervening items was tested immediately after (i.e., primed
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by) the order judgments. Consistent with the aforementioned studies that looked at cued

recall and cued recognition, when people made a correct order judgment, the speed at

which they recognized the intervening items was faster when there was no event bound-

ary, suggesting greater within-event access to item sequences. The within-event versus

across-events difference in temporal order memory has also been shown in more recent

studies that used perceptual boundaries (background color changes, Heusser et al., 2018)

and spatial boundaries (room changes, Horner, Bisby, Wang, Bogus, & Burgess, 2016;

turns in navigation, Brunec et al., 2020). These experiments show that temporal informa-

tion is better preserved within an event than across events, potentially via better recon-

struction of a study sequence.

Another way to test how individuals reconstruct sequences from memory is to examine

transition probabilities in verbal recall. In one study, people were asked to recall items in

the same order that they were studied. Accurate serial transitions between recalled items

were found to be more common within than across category boundaries, providing addi-

tional support for the better reconstruction of a study sequence within an event (DuBrow

& Davachi, 2016). Similarly, in unconstrained free recall studies, event-level clustering

(Polyn, Norman, & Kahana, 2009b) and a tendency toward more forward serial transi-

tions within events compared to across boundaries (Heusser et al., 2018) have been

observed. Since recall order was unconstrained, these results suggest that event-level

organization may be a fundamental property of recall. That is, event structure may pro-

vide a scaffold for spontaneously recalling past experiences in their sequential order.

2.3. Adaptive decision making

Interestingly, this sequential recall closely resembles sequential reactivation in the hip-

pocampus (Foster & Wilson, 2007), in which event structure has been observed while an

experience unfolds. In particular, Gupta, van der Meer, Touretzky, and Redish (2012)

showed that hippocampal activation reflects the segment of the environment that is cur-

rently being navigated (i.e., the event model), disproportionately representing paths ahead

within the segment in the beginning and paths behind within the segment as they

approach its end. This activation of currently relevant information has implications for

decision making, where generalizing relevant past experiences can guide decisions for

unknown possible futures. Indeed, an extensive literature on rodent navigation and deci-

sion making has shown that hippocampal activation of forward trajectories occurs preced-
ing decisions about where to go next (Johnson & Redish, 2007; Pfeiffer & Foster, 2013;

for reviews, see �Olafsd�ottir, Bush, & Barry, 2018; Pezzulo, van der Meer, Lansink, &

Pennartz, 2014). Similar neural reinstatement effects, both during rest (Momennejad,

Otto, Daw, & Norman, 2018; Schuck & Niv, 2019) and prospectively at decision times

(Doll, Duncan, Simon, Shohamy, & Daw, 2015), have also been shown to influence sub-

sequent decision making in humans.

Although traditionally decision making has been viewed as relying on a representation

of incrementally learned value that is independent of episodic memory (Knowlton, Man-

gels, & Squire, 1996; cf. Poldrack et al., 2001), replay of past experiences at decision
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points suggests the potential contribution of episodic memories. Indeed, a growing litera-

ture has shown that adaptive decisions are influenced by episodic memory retrieval (Sha-

dlen & Shohamy, 2016; Shohamy & Daw, 2015). For example, people are more likely to

choose previously encountered items that were associated with high values than low val-

ues only when they remember such associations (Murty, FeldmanHall, Hunter, Phelps, &

Davachi, 2016), and they may rely more on individual episodes over summary values for

decision making following memory retrieval (Duncan, Semmler, & Shohamy, 2019).

Linking the roles of episodic memory and event segmentation, Bornstein and Norman

(2017) showed that, when reminded of an image experienced in a previous event, peo-

ple’s decisions are biased by the summary of their experiences in that event, not just the

specific experience associated with the reminded image. This result suggests that event

segmentation can support the interaction between episodic memory and decision making,

by guiding retrieval of past decision outcomes from previous events that most closely

match the current situation.

Together, these studies suggest that organizing information into event structures can

have important benefits for online processing and retrieval of relevant information that, in

turn, can help guide adaptive decision making. Given the widespread effects of segmenta-

tion, it is crucial to appropriately segment our everyday experiences into events in a way

that promotes later utilization. One of the major challenges in doing so is the inherent

ambiguity of when an event starts and ends. Many of the studies reviewed showing the

benefits for memory and decision making of event segmentation cannot address this chal-

lenge, as they imposed stark changes in spatial contexts, perceptual features, task sets,

and so forth to manipulate segmentation (see Table 1). Experiments that use narratives to

induce event boundaries are more ambiguous because there can be multiple changes

along different dimensions (cf. event indexing theory; Zwaan, Langston, & Graesser,

1995), but they still often contain signals for boundaries such as time shifts or scene

changes. When event boundaries are not overtly signaled, how do we segment events?

Below we review theories of event segmentation under ambiguity. We focus on the tradi-

tional prediction error account and our proposed framework that identifies boundaries

based on changes in inference rather than extrinsic change.

3. Potential mechanisms of event segmentation

3.1. Prediction error

The dominant account of event segmentation is that “prediction error,” the difference

between one’s experience-based expectation and the currently observed outcome, signals

the end of events and induces event boundaries (Zacks et al., 2007). To test how explicit

predictions are related to event segmentation, Zacks, Kurby, Eisenberg, and Haroutunian

(2011) showed people movie clips of everyday activities, and occasionally paused the clip

to ask them to predict what would happen in 5 s. When there was an intervening event

boundary, as identified by independent observers, the prediction accuracy dropped, and
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there was greater activation in the substantia nigra, a region traditionally associated with

dopaminergic responses to reward prediction errors. In line with this idea, a neural net-

work model that implements perceptual prediction error as a gating signal to update event

representations can identify simulated event boundaries (Reynolds, Zacks, & Braver,

2007). However, there are major challenges regarding the precise relationship between

prediction errors and event segmentation.

First, prediction errors may not always signal meaningful changes in event perception,

particularly when the environment is uncertain (O’Reilly, 2013). That is, while it can be

ideal to draw boundaries in order to discount the past when the underlying statistics of

the world change abruptly, disregarding the broader environmental context would be sub-

optimal when the environment is noisy, as frequent high prediction errors would lead to

over-segmentation. Instead, when prediction errors are frequent, boundaries should only

be drawn following unexpected deviations, as expected deviations are not reflective of

meaningful changes in the underlying event structure. This can be accomplished by scal-

ing down the degree to which prediction error updates expectations (i.e., the learning

rate) for these expected deviations. Empirically, boundary-related memory effects that

occur when changes are infrequent are absent when changes occur frequently (Siefke,

Smith, & Sederberg, 2019). This idea is further reflected in studies where people’s learn-

ing rates dynamically adjust to the uncertainty of the environment, reducing the effects of

prediction errors in noisy environments while enhancing them in stable environments, in

which a relatively high prediction error indicates meaningful change (Behrens, Woolrich,

Walton, & Rushworth, 2007; Nassar et al., 2012; Nassar, Wilson, Heasly, & Gold, 2010;

Pearce & Hall, 1980). This suggests that the magnitude of the update (i.e., prediction

error 9 learning rate) may be a better indicator of event boundaries than prediction error

alone, given the non-stationary nature of everyday experiences.

Second, prediction errors may not be necessary to create an event boundary. For exam-

ple, in narrative reading, when an event shift is foreshadowed, readers still respond more

slowly to the pre-shift memory probes even though they no longer experience surprise

nor slow their reading (Pettijohn & Radvansky, 2016). This suggests that even expected

change, when sufficiently meaningful, can drive event segmentation in memory. One

demonstration of this is statistical learning (Saffran, Aslin, & Newport, 1996). In one

study, Schapiro, Rogers, Cordova, Turk-browne, and Botvinick (2013) found that people

could identify boundaries in a series of stimuli based on their learned temporal transition

statistics without ever experiencing prediction errors. In their experiments, most stimuli

were exclusively followed by other stimuli within the same group, while some stimuli

served as entry/exit points where a transition across groups was available. Notably, the

individual transition probability from a group’s exit point to a neighboring group’s entry

point was equal to the probability of each within-group transition, and thereby did not

induce prediction errors (see also Richmond & Zacks, 2017, for discussion). After learn-

ing, participants successfully indicated the transitions between groups (i.e., the entry

points) in the sequence of stimuli. This highlights the importance of segmenting experi-

ence even at predictable transitions between events. Indeed, predictable transitions may
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enhance segmentation effects by shifting attentional resources to boundaries (Baldwin &

Kosie, 2020).

As reviewed here, prediction error defined as the difference between one’s expectation

and the observed outcome may not be sufficient or necessary for segmenting events. This

calls for an alternative account of the mechanisms underlying event segmentation.

3.2. Inference of event types

No two events can be exactly the same even when they are from the same category, as

at least one dimension, time, is always unique. For example, when items occur in two

different instances of the same category (i.e., ABA structure), there is an intervening

change in event type, and the two visits to A are idiosyncratic in terms of time. When

comparing this scenario to a single continuous instance of an event (AAA structure), seg-

mentation effects are observed despite comparing two items of the same type (DuBrow &

Davachi, 2013, 2014). Radvansky et al. (2011) used a more naturalistic boundary manipu-

lation with the same structure by having people walk around a series of rooms and then

testing their memory. When returning to the same room after having been to a different

room (ABA), their memory was worse than when they never left the room at all (AAA).

Thus, staying in the same event instance (no event boundaries) has a memory advantage

over merely having shared context (room A). This suggests that boundaries affect mem-

ory above and beyond the effects of changing context.

Time-sensitive and idiosyncratic event instances do interact with the structure of

knowledge formed by multiple encounters with similar situations. In Radvansky et al.

(2011), people also performed better when they returned to the same room (ABA) com-

pared to when they went to another room (ABC). Thus, the event type that represents a

class of experiences (called event schemata in Event Segmentation Theory; Zacks et al.,

2007) is a key factor in understanding segmentation (for reviews, see Radvansky &

Zacks, 2011; Zacks et al., 2007). For example, in the statistical learning study described

in the previous section, stimuli that tended to be experienced in close temporal proximity

became discrete clusters (event types) in memory (Schapiro et al., 2013). When revisited,

these clusters could be recognized even though different paths were experienced across

learning instances due to the probabilistic structure. These studies raise the possibility that

event types can be a useful basis for promoting generalization of learning within type,

allowing us to extrapolate our previous experiences in an event to a new instance.

Event types can also stabilize event segmentation hierarchically such that, in parsing

events, low-level perceptual changes that are not relevant to the event type carry less

weight than changes along dimensions that are pertinent to the event type. In a neural

network application of this idea, the REPRISE model stabilizes low-level perceptual and

motor information to be consistent with the current event type (called a “context vector”)

when executing event-level control (Butz, Bilkey, Humaidan, Knott, & Otte, 2019).

Empirically, hierarchical structures in event segmentation are consistently observed in

behavioral (Zacks, Tversky, et al., 2001) and brain imaging studies (Baldassano et al.,
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2017; Hasson, Yang, Vallines, Heeger, & Rubin, 2008; Lerner, Honey, Silbert, & Hasson,

2011), supporting the idea that event types are utilized in segmenting experience.

It is important to note that these event types do not exist in isolation and are continu-

ously created and updated based on event instances. How do we dynamically update and

create new event types? To inform this, we turn to category learning, where a similar set

of challenges exists. Categories, like event types, help facilitate understanding of their

individual members through generalization of category properties. However, as in event

perception, we do not know how many categories exist in the world, and we need to

update the existing categories’ summary statistics based on their members, while being

open to creating a completely new category. The rational model of categorization

addresses these challenges by proposing that a stimulus is more likely to be a member of

a prolific category with many members, and yet a new category can be inferred at any

point when the existing categories are not a good match (Anderson, 1991; also called the

Chinese Restaurant Process [CRP], Aldous, 1985). In discovering clusters such as cate-

gories from observations, this rich-gets-richer process reins in the tendency to create too

many clusters and thus keeps the model simple while still allowing for new cluster for-

mation. The adaptable nature of the model aids predictions within categories by extrapo-

lating features and functions within the categories, whether or not an explicit label was

given to a new category (Anderson, 1991). Thanks to its flexibility, this model can be

generalized to two popular models of categorization where instances of a category can

either (a) be lumped together such that one summary value can account for the category

(prototype model; Reed, 1972) or (b) be perfectly preserved to be later compared with

other instances (exemplar model; Medin & Schaffer, 1978; Nosofsky, 1986), by varying a

single parameter that governs creation of a new category (Sanborn, Griffiths, & Navarro,

2010). The rational model provides a unified framework that successfully predicts catego-

rization behavior in humans across domains (Anderson, 1991; Sanborn et al., 2010).

The model is particularly useful in situations where there is a latent variable (i.e., a

cluster of experiences such as a category or event type) that needs to be discovered to

properly generalize across experiences. For example, the model can explain how people

effectively generalize between tasks by forming clusters of task sets (Collins & Frank,

2013). In reinforcement learning, the model can explain how the latent variable can guide

reward predictions, and how a new latent variable can be inferred when existing ones do

not predict the outcome (Courville, Daw, & Touretzky, 2005). This model performs better

than classic reinforcement learning models in explaining how compound reward cues are

flexibly represented (Courville et al., 2005; Soto, Gershman, & Niv, 2014) and why con-

ditioned responses come back after extinction (Gershman, Blei, & Niv, 2010). In event

perception, the latent variable would correspond to event types. That is, we can identify

an event type from a time-specific event instance, updating the type based on the

instance, or create a new event type when an instance does not fit with any of the exist-

ing event types’ properties. The latent variable model would also predict that, due to its

rich-gets-richer property, we are more likely to infer an event type that we encounter

often (i.e., high prior probability) when it sufficiently explains the current episode (i.e.,

high likelihood), rather than inferring a new event type de novo. In this framework, event
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segmentation is likely to occur when the distribution over inferred event types diverges

from the distribution at the previous time point. Event segmentation based on distribu-

tional changes can explain how experiences are clustered into units even when there is no

prediction error between experiences, as in statistical learning-based clustering described

above.

A demonstration of this inference process is depicted in Fig. 1. As we watch a movie,

we learn that the character Julie recently lost her husband Patrice, a famous composer, in

an accident. Later, Julie discovers that Patrice’s assistant Olivier is trying to complete

one of Patrice’s unfinished scores and that Patrice had a mistress. When we see Julie

approaching Olivier (Fig. 1.a-1), we do not know whether she will confront him about

the score or the mistress, and the probabilities of the two event types are uniformly dis-

tributed (Fig. 1.c leftmost panel). When Julie and Olivier have a conversation about the

unfinished score (Fig. 1.a-2) and then the movie jumps to Olivier playing the song

(Fig. 1.a-3), the same “unfinished score” event type is active despite the perceptual input

and spatial context having changed (denoted by the change in background color in

Fig. 1.c). Note that the probability of event segmentation is low despite the location

change (denoted by a gray dotted line in Fig. 1.c,d). Conversely, event segmentation can

happen without big perceptual changes (denoted by black dotted lines in Fig. 1.c,d). In

scene 4, the prior for the “unfinished score” is higher than “mistress conversation”

because of the greater number of previous instances of the “unfinished score” event type

(denoted by the number of boxes in Fig. 1.b left) and the model’s rich-gets-richer prop-

erty. However, despite occurring at the same location, as Julie diverts her attention away

from the piano to ask Olivier whether he knew about the mistress, the likelihood of the

“unfinished score” event becomes lower while the likelihood of the “mistress conversa-

tion” becomes higher (Fig. 1.b center). Thus, the updated posterior probability shifts

toward “mistress conversation” (Fig. 1.b right). In the proposed framework, the diver-

gence between the updated probability distribution and that of the previous time point

increases the probability of event segmentation (Fig. 1.d).

Inference-based segmentation can be useful when there is high uncertainty about the

upcoming event type, as it allows an event to end without introducing a new event,

thereby protecting the event that just ended from further interference. In the example,

when Olivier asks what Julie wants to do about the mistress (Fig. 1.a-5), the screen fades

out (Fig. 1.a-6). With no visual input, we can still make predictions about what will hap-

pen in the next scene. It turns out that the next scene is the continuation of scene 5 where

Julie answers Olivier that she wants to meet the mistress (Fig. 1.a-7). Note, the probabil-

ity distribution at scene 7 is similar to the one in scene 5. However, event segmentation

is still likely to occur between 5 and 7 because the prediction at scene 6 became highly

uncertain and thus the probability distributions diverged.

One key aspect of the framework is that the inference process makes use of previously

created event types. For example, after meeting the mistress, we again see Julie visiting

Olivier (Fig. 1.a-9), and we are again unsure about what the topic of their conversation

will be. Thus, the probabilities of the two event types are uniformly distributed. When

we see that they start working on Patrice’s score together (Fig. 1.a-10), instead of
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creating a whole new event type, we can reactivate the “unfinished score” event type

and update the event with new information. Again, notice that the probability distribu-

tions for scenes 3 and 10 are similar, but segmentation has occurred between those two

event instances. Overall, this example illustrates the inference process and three key

features of the model: (a) event segmentation occurs when the inferred events, rather

than observed features, change, (b) common event types are more likely to be inferred

(rich-gets-richer property), and (c) previous event types can be revisited and updated,

enabling generalization.
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Fig. 1. An example of inference-based segmentation: (a) scenes from Krzysztof Kieslowski’s movie Three
colors: Blue. In this movie, Julie, a recent widow of a famous composer, tries to finish her husband’s score

and tracks down his mistress. (b) Inference process of event types. Left: Prior probability of each event type

reflects the popularity of each event type (indicated by number of boxes constituting the bars). Note that there

is a small chance of creating a new event type that has not yet been observed. Center: The likelihood of

event type “mistress conversation” is higher than the likelihood of “unfinished score” given the current obser-

vation (low attention on the piano). Right: Combining the prior distribution and likelihoods results in the cur-

rent posterior probability distribution over event types. Here, posterior probability is higher for the “mistress

conversation” than the “unfinished score” event type, although the prior was higher for “unfinished score.”

(c) Changes in posterior probabilities. The posterior distribution over event types changes as observations

change. Note that changes in the location (denoted by the background color) are not always predictive of pos-

terior distribution changes. (d) Probability of event segmentation. Events are more likely to be segmented

when changes in the probability distribution from the previous time point are large. Again, event segmenta-

tion (solid dotted lines) and location change (gray dotted lines) do not always correspond.
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3.3. Support for the latent variable account

Beyond online inference during event perception, the latent variable account also

makes specific predictions about memory retrieval related to its cluster organization of

individual episodes. As an analogy to memory retrieval, imagine looking back at some

photo albums of a recent trip to Hawaii during which you went surfing many times and

hiking just once (Fig. 2). You may look at the two photo albums “Surfing in Hawaii” and

“Hiking in Hawaii” and summarize your Hawaii trip as “surfing and hiking.” That is,

summarizing experiences by sampling at the cluster (photo album) level leads to an over-

representation of rare episodes relative to how often they were actually experienced. In

this example, cluster-level sampling will bias the memory toward equal weighting of surf-

ing and hiking. By contrast, episodic sampling of the individual images will accurately

represent their relative frequency and reflect that surfing was the main activity. This

strong prediction of cluster-level sampling was recently tested by modeling the inference

of a latent variable based on a set of observations. By manipulating the distribution of

those observations, Shin and Niv (2020) showed that more clusters are inferred when

fewer and more variable values are observed, which in turn biases summary estimates

p( |“Surfing”) p( |“Hiking”)<cluster-level sampling

item-level sampling

trip to Hawaii

p(recallt=              | recallt-1=              ) p(recallt=              | recallt-1=              )>

Fig. 2. Schematic for cluster-level and item-level sampling. As an analogy to memory retrieval, imagine

looking back at some photo albums of a recent trip to Hawaii. If you summarize the trip, you may look at a

few photos from each album (cluster-level sampling; top dashed arrow). In this case, any individual photo

from a thinner album (e.g., “Hiking”) would be more likely to be picked than any individual photo from a

thicker album (e.g., “Surfing”), gaining prominence in the overall summary. On the other hand, you may

want to retrieve detailed experiences, looking at each photo (item-level sampling; bottom dotted arrows). In

this case, a photo will be more likely to be followed by another photo from the same album (e.g., “Surfing”)

than a different album (e.g., “Hiking”).
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toward those rarer and more extreme events. This suggests that people can and do use

cluster-level sampling to summarize experiences.

Relying on latent structure for summarizing experiences can also explain systematic

memory distortions toward gist—the summary statistics of the latent variable. For

instance, in a study where the organizing structure was imposed by item categories (e.g.,

lamp), color memory for individual members of a category was distorted toward the cen-

ter of the color distribution of its category (Brady, Schacter, & Alvarez, 2018). At its

extreme, the latent variable can even create false memories such that words that are not a

part of the studied list yet exist at the conceptual/semantic center of the list are falsely

recalled as one of the studied items (Deese, 1959; Roediger & McDermott, 1995). These

types of gist biases can be useful in summarizing experiences, albeit at the cost of accu-

racy for each individual episode.

While the latent variable model can summarize experiences at the cluster level, this

does not preclude sampling individual episodes during retrieval. Indeed, episodic sam-

pling from clusters makes additional predictions for memory biases. Returning to the

photo album analogy, imagine choosing a few photos from each photo album. Any given

photo from an album with fewer photos would be more likely to be chosen. In a similar

sense, when searching memory for past experiences by going through latent variables

(events) and sampling from each of them (cluster-level sampling; Fig. 2 top), the epi-

sodes that have fewer companions in a cluster are more likely to be sampled, and thus

are more likely to be retrieved. This idea is consistent with work by Alves et al. (2015),

where people were found to be better at recognizing words that have fewer close concep-

tual neighbors in the same studied list. Sampling in this way can also account for mem-

ory biases like the von Restorff effect in which distinctive items are better remembered

(Hunt, 1995; von Restorff, 1933) and the cue overload effect in which memory is better

for items whose retrieval cue has fewer associated items (Watkins & Watkins, 1976).

What determines how many episodes each cluster contains when the clusters need to be

dynamically inferred? One answer is extreme events that deviate from the average of previ-

ously existing clusters in terms of the relevant feature dimensions (e.g., a very loud noise

that is not commonly experienced). During inference, the latent variable model is more

likely to create an entirely new cluster for an extreme event. Since any given episode in a

small cluster is more likely to be sampled, cluster-level sampling can account for memory

and decision biases toward extreme episodes. For example, when people directly experience

risky outcomes, they become risk seeking for gains and risk averse for losses (Hertwig, Bar-

ron, Weber, & Erev, 2004; Ludvig & Spetch, 2011). These decision biases are mediated by

a memory bias in which extreme outcomes are remembered better and judged to have

occurred more frequently (Madan, Ludvig, & Spetch, 2014, 2017). Similarly, episodes are

better remembered when they elicit high reward prediction errors, regardless of their

valence (Rouhani, Norman, & Niv, 2018). Recent work by Lieder, Griffiths, and Hsu (2014,

2018) also demonstrates that extreme events are more likely to be sampled from memory,

although they propose a different sampling mechanism.

When trying to search for specific episodes, it would be useful to skim over a range of

events (e.g., skimming the cover of photo albums) and go deeper only once we find the
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relevant event (e.g., open a photo album and look through the album). Supporting this

idea, neural replay patterns measured with magnetoencephalography have been shown to

skip between events, reinstating only the entry points of events in sequence (Michelmann,

Staresina, Bowman, & Hanslmayr, 2019). When retrieval continues (e.g., choosing photos

one after another), however, episodic samples would be more likely to transition within

events than across events (i.e., item-level sampling; Fig. 2 bottom). That is, when we are

motivated to retrieve details of episodic memories, rather than providing a quick sum-

mary of the entire experiences, it is easier to hold onto one album and to go through indi-

vidual photos within an album than going back and forth between albums. This idea is

supported by empirical data that show transitions within events are more likely than

across events in free recall (Heusser et al., 2018) and serial recall (DuBrow & Davachi,

2016). The latent variable model would explain such recall behavior by modulating recall

probability according to the similarity between posterior distributions over latent vari-

ables. Linking the latent variable model to episodic memory, Socher et al. (2009) showed

that a variant of the model can predict within-event transitions in human recall behavior.

In their variant, the probability of recalling a specific word was determined based on the

mixture of the latent topic structure (semantic context) and the temporal adjacency (episo-

dic context) active at a given time. This model could predict recall transitions better than

models with purely semantic or episodic context, suggesting that both conceptual and

temporal structures are critical features of clusters in memory.

4. Future directions

Theories of episodic memory organization provide additional insight into how temporal

information may play a role in structuring events. For instance, the Temporal Context

Model (Howard & Kahana, 2002) and the Context Maintenance and Retrieval model

(Polyn, Norman, & Kahana, 2009a) have emphasized how storing a separate temporal

representation may provide a scaffold for organizing memories. While these models have

been highly successful in predicting memory recall, the way in which time interacts with

ongoing event encoding and segmentation needs further investigation. Rather than having

to store an independent representation of temporal information (Socher et al., 2009), a

nonparametric Bayesian model in which time is incorporated into the process of inferring

latent variables could be more parsimonious. That is, the model could be sensitive to the

recency of events without having to separately track time, as the probability of a previous

event would decay over time since it was last active. In addition, by assuming that

recently encountered event types have a higher chance of producing the current observa-

tion, the model can provide temporal stability in the inference process. One candidate

model is a latent variable model that utilizes distance in the prior probability of events,

called the distance-dependent Chinese Restaurant Process (ddCRP; Blei & Frazier, 2011).

Instead of relying on cluster popularities as the standard rational model of categorization

and CRP do, the ddCRP prior can assign probabilities according to the temporal distance

between previous and current observations. Similarly, a simpler variant of this model in
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which a currently active cluster gets an extra boost, called a sticky CRP (Fox, Sudderth,

Jordan, & Willsky, 2011), has been used to account for stable event perception (Franklin

et al., 2019; Gershman et al., 2014). Another intriguing direction for event segmentation

research is incorporating time into the ddCRP hierarchically (cf. Ghosh, Ungureanu, Sud-

derth, & Blei, 2011) for event types to perform a stabilizing function that can improve

generalization across instances.

The exact mechanisms by which event types are inferred and how the inferred event

type interacts with event segmentation need further exploration. One possibility is that

events are segmented when there is a change in the distribution over inferred event types

(Fig. 1). This would explain the event segmentation effects observed when boundaries

are imposed by time shift signals (e.g., “a while later”) before the next event begins. That

is, such phrases or other signals that the previous event has ended and is no longer rele-

vant (e.g., the fade-to-black sixth scene in Fig. 1.a) would increase uncertainty over event

types, thereby changing the probability distribution and inducing an event boundary. A

conceptual parallel can be found in a neural network model called the Connectionist

Temporal Classification model (Graves, Fern�andez, Gomez, & Schmidhuber, 2006). In

this model, boundaries can be created at moments of high uncertainty (e.g., silence)

where the likelihoods of any existing labels (event types) are low. This approach of treat-

ing high uncertainty as a non-labeled state increases flexibility in terms of how long an

event lasts by allowing an event to end before the next one begins. These models differ

from Event Segmentation Theory, which assumes that a new event begins as soon as the

previous event ends (Kurby & Zacks, 2008). Experiments that test specific hypotheses

based on the proposed framework (e.g., event boundaries will occur at the offset of an

event instance as well as at the onset) would provide further insight as to how events are

segmented, being guided by, and guiding, predictions.

There are remaining questions regarding how transitions between event types are

learned and represented. In its current form, the latent variable framework does not

directly address how transition probabilities would be incorporated in event segmentation.

Neural network approaches have begun to investigate how transition models between

low-level event types (behavioral primitives) can be learned such that the history of pre-

vious event transitions would inform the subsequent prediction at an event boundary

(Gumbsch, Butz, & Martius, 2019). Another important question pertains to the hierarchi-

cal structure of event types. That is, when one event type is repeatedly followed by

another, would those two event types continue to be recognized as distinct or would they

ultimately be merged into a single, more complex event type? In either case, the mecha-

nisms by which transition probabilities (within and across events) are represented and uti-

lized in event cognition will need further examination.

5. Conclusion

A large body of work now suggests that event segmentation is a fundamental process

that emerges naturally and is remarkably consistent across individuals. Research on how
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segmentation influences memory demonstrates its adaptive utility in increasing access to

relevant information and reducing interference. In order to better understand the cognitive

operations that support event segmentation, we must examine patterns of behavior when

the answer is not clear (i.e., during ambiguous transitions) and model the internal pro-

cesses that infer change based on ambiguous input. In particular, we propose that latent

variable inference provides a useful framework for characterizing how we identify when

an event is no longer relevant and select among alternatives. This framework accounts

for existing data on the consequences of event segmentation for online processing, mem-

ory, and decision making, and generates new predictions that can guide future research

and model development.
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